

Blue Cross Blue Shield of Massachusetts is an Independent Licenses of the Blue Cross and Blue Shield Association

Medical Policy

Radiofrequency Ablation of Miscellaneous Solid Tumors Excluding Liver Tumors

Table of Contents

- Policy: Commercial
- Policy: Medicare
- Authorization Information
- Coding Information
- Description
- Policy History
- Information Pertaining to All Policies
- References

Policy Number: 259

BCBSA Reference Number: 7.01.95 (For Plans internal use only)

NCD/LCD: NA

Related Policies

- Cryosurgical Ablation of Miscellaneous Solid Tumors Other Than Liver, Prostate or Dermatologic Tumors, #260
- Radiofrequency Ablation of Primary or Metastatic Liver Tumors, #286
- Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy, #277

Policy

Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity Medicare HMO BlueSM and Medicare PPO BlueSM Members

Radiofrequency ablation may be <u>MEDICALLY NECESSARY</u> to palliate pain in individuals with osteolytic bone metastases who have failed or are poor candidates for standard treatments such as radiation or opioids.

Radiofrequency ablation may be <u>MEDICALLY NECESSARY</u> to treat osteoid osteomas that cannot be managed successfully with medical treatment.

Radiofrequency ablation may be <u>MEDICALLY NECESSARY</u> to treat localized renal cell carcinoma that is no more than 4 cm in size when either of the following criteria is met:

- In order to preserve kidney function in individuals with significantly impaired renal function (i.e., the individual has one kidney or renal insufficiency defined by a glomerular filtration rate [GFR] of less than 60 mL/min per m2) when the standard surgical approach (i.e., resection of renal tissue) is likely to substantially worsen existing kidney function; OR
- The individual is not considered a surgical candidate.

Radiofrequency ablation may be <u>MEDICALLY NECESSARY</u> to treat an isolated peripheral non-small cell lung cancer lesion that is no more than 3 cm in size when the following criteria are met:

• Surgical resection or radiation treatment with curative intent is considered appropriate based on stage of disease, however, medical co-morbidity renders the individual unfit for those interventions; AND

• Tumor is located at least 1 cm from the trachea, main bronchi, esophagus, aorta, aortic arch branches, pulmonary artery and the heart.

Radiofrequency ablation may be <u>MEDICALLY NECESSARY</u> to treat malignant non-pulmonary tumor(s) metastatic to the lung when there are no more than 3 tumors per lung and twelve months have elapsed before a repeat ablation is considered:

- In order to preserve lung function when surgical resection or radiation treatment is likely to substantially worsen pulmonary status OR the individual is not considered a surgical candidate; AND
- There is no evidence of extrapulmonary metastases; AND the tumor is located at least 1 cm from the trachea, main bronchi, esophagus, aorta, aortic arch branches, pulmonary artery and the heart.

The tumors:

- Should no more than 3 cm in size AND
- Amenable to complete ablation.

Radiofrequency ablation is considered **INVESTIGATIONAL** in the following conditions:

- As a technique for ablation of tumors of the breast,
- Lung cancer not meeting the criteria above,
- Renal cell cancer not meeting the criteria above, and
- All other tumors outside the liver including, but not limited to, the head and neck, thyroid, adrenal
 gland, ovary, and pelvic/abdominal metastases of unspecified origin and for the treatment of osteoid
 osteomas that can be managed with medical treatment and for initial treatment of painful bony
 metastases.

Prior Authorization Information

Inpatient

• For services described in this policy, precertification/preauthorization **IS REQUIRED** for all products if the procedure is performed **inpatient**.

Outpatient

• For services described in this policy, see below for products where prior authorization <u>might be</u> required if the procedure is performed outpatient.

	Outpatient
Commercial Managed Care (HMO and POS)	Prior authorization is not required .
Commercial PPO and Indemnity	Prior authorization is not required .
Medicare HMO Blue SM	Prior authorization is not required .
Medicare PPO Blue SM	Prior authorization is not required .

CPT Codes / HCPCS Codes / ICD Codes

Inclusion or exclusion of a code does not constitute or imply member coverage or provider reimbursement. Please refer to the member's contract benefits in effect at the time of service to determine coverage or non-coverage as it applies to an individual member

Providers should report all services using the most up-to-date industry-standard procedure, revenue, and diagnosis codes, including modifiers where applicable.

The following codes are included below for informational purposes only; this is not an all-inclusive list.

The above <u>medical necessity criteria MUST</u> be met for the following codes to be covered for Commercial Members: Managed Care (HMO and POS), PPO, Indemnity, Medicare HMO Blue and Medicare PPO Blue:

CPT Codes

CPT codes:

	Code Description
20982	Ablation, bone tumor(s) (e.g. osteoid osteoma, metastasis) radiofrequency,
	percutaneous, including computed tomographic guidance

The following ICD Diagnosis Codes are considered medically necessary when submitted with the CPT codes above if <u>medical necessity criteria</u> are met:

ICD-10 Diagnosis Codes

ICD-10-CM Diagnosis	
codes:	Code Description
C79.51	Secondary malignant neoplasm of bone
C79.52	Secondary malignant neoplasm of bone marrow
D16.00	Benign neoplasm of scapula and long bones of unspecified upper limb
D16.01	Benign neoplasm of scapula and long bones of right upper limb
D16.02	Benign neoplasm of scapula and long bones of left upper limb
D16.10	Benign neoplasm of short bones of unspecified upper limb
D16.11	Benign neoplasm of short bones of right upper limb
D16.12	Benign neoplasm of short bones of left upper limb
D16.20	Benign neoplasm of long bones of unspecified lower limb
D16.21	Benign neoplasm of long bones of right lower limb
D16.22	Benign neoplasm of long bones of left lower limb
D16.30	Benign neoplasm of short bones of unspecified lower limb
D16.31	Benign neoplasm of short bones of right lower limb
D16.32	Benign neoplasm of short bones of left lower limb
D16.4	Benign neoplasm of bones of skull and face
D16.5	Benign neoplasm of lower jaw bone
D16.6	Benign neoplasm of vertebral column
D16.7	Benign neoplasm of ribs, sternum and clavicle
D16.8	Benign neoplasm of pelvic bones, sacrum and coccyx
D16.9	Benign neoplasm of bone and articular cartilage, unspecified

The above <u>medical necessity criteria MUST</u> be met for the following codes to be covered for Commercial Members: Managed Care (HMO and POS), PPO, Indemnity, Medicare HMO Blue and Medicare PPO Blue:

CPT Codes

CPT codes:	Code Description
50592	Ablation, 1 or more renal tumor(s), percutaneous, unilateral, radiofrequency

The following ICD Diagnosis Codes are considered medically necessary when submitted with the CPT codes above if <u>medical necessity criteria</u> are met:

ICD-10 Diagnosis Codes

ICD-10-CM Diagnosis codes:	Code Description
C64.1	Malignant neoplasm of right kidney, except renal pelvis
C64.2	Malignant neoplasm of left kidney, except renal pelvis
C64.9	Malignant neoplasm of unspecified kidney, except renal pelvis

The above <u>medical necessity criteria MUST</u> be met for the following codes to be covered for Commercial Members: Managed Care (HMO and POS), PPO, Indemnity, Medicare HMO Blue and Medicare PPO Blue:

CPT Codes

CPT codes:	Code Description
32998	Ablation therapy for reduction or eradication of 1 or more pulmonary tumor(s) including pleura or chest wall when involved by tumor extension, percutaneous, including imaging guidance when performed, unilateral; radiofrequency
50542	Laparoscopy, surgical; ablation of renal mass lesion(s), including intraoperative ultrasound guidance and monitoring, when performed

The following ICD Diagnosis Codes are considered medically necessary when submitted with the CPT codes above if medical necessity criteria are met:

ICD-10 Diagnosis Codes

ICD-10-CM	
Diagnosis	
codes:	Code Description
C34.00	Malignant neoplasm of unspecified main bronchus
C34.01	Malignant neoplasm of right main bronchus
C34.02	Malignant neoplasm of left main bronchus
C34.10	Malignant neoplasm of upper lobe, unspecified bronchus or lung
C34.11	Malignant neoplasm of upper lobe, right bronchus or lung
C34.12	Malignant neoplasm of upper lobe, left bronchus or lung
C34.2	Malignant neoplasm of middle lobe, bronchus or lung
C34.30	Malignant neoplasm of lower lobe, unspecified bronchus or lung
C34.31	Malignant neoplasm of lower lobe, right bronchus or lung
C34.32	Malignant neoplasm of lower lobe, left bronchus or lung
C34.80	Malignant neoplasm of overlapping sites of unspecified bronchus and lung
C34.81	Malignant neoplasm of overlapping sites of right bronchus and lung
C34.82	Malignant neoplasm of overlapping sites of left bronchus and lung
C34.90	Malignant neoplasm of unspecified part of unspecified bronchus or lung
C34.91	Malignant neoplasm of unspecified part of right bronchus or lung
C34.92	Malignant neoplasm of unspecified part of left bronchus or lung
C38.4	Malignant neoplasm of pleura
C78.00	Secondary malignant neoplasm of unspecified lung
C78.01	Secondary malignant neoplasm of right lung
C78.02	Secondary malignant neoplasm of left lung
C78.1	Secondary malignant neoplasm of mediastinum
C78.2	Secondary malignant neoplasm of pleura

Description

Radiofrequency Ablation

Radiofrequency ablation (RFA) was initially developed to treat inoperable tumors of the liver (see policy #286). Recently, studies have reported on the use of RFA to treat other tumors. For some of these, RFA is being investigated as an alternative to surgery for operable tumors. Well-established local or systemic treatment alternatives are available for each of these malignancies. The hypothesized advantages of RFA for these cancers include improved local control and those common to any minimally invasive procedure (eg, preserving normal organ tissue, decreasing morbidity, decreasing length of hospitalization).

Goals of RFA may include (1) controlling local tumor growth and preventing recurrence; (2) palliating symptoms; and (3) extending survival duration for patients with certain tumors. The effective volume of RFA depends on the frequency and duration of applied current, local tissue characteristics, and probe configuration (eg, single vs. multiple tips). RFA can be performed as an open surgical procedure, laparoscopically or percutaneously, with ultrasound or computed tomography guidance.

Potential complications associated with RFA include those caused by heat damage to normal tissue adjacent to the tumor (eg, intestinal damage during RFA of kidney), structural damage along the probe track (eg, pneumothorax as a consequence of procedures on the lung), and secondary tumors (if cells seed during probe removal).

Summary

In radiofrequency ablation (RFA), a probe is inserted into the center of a tumor; then, prong-shaped, non-insulated electrodes are projected into the tumor. Next, heat is generated locally by an alternating, high-frequency current that travels through the electrodes. The localized heat treats the tissue adjacent to the probe, resulting in a 3 cm to 5.5 cm sphere of dead tissue. The cells killed by RFA are not removed but are gradually replaced by fibrosis and scar tissue. If there is a local recurrence, it occurs at the edge and can sometimes be retreated. RFA may be performed percutaneously, laparoscopically, or as an open procedure.

For individuals who have painful osteolytic bone metastases who have failed or are poor candidates for standard treatments who receive radiofrequency ablation (RFA), the evidence includes a prospective cohort study and case series. Relevant outcomes are symptoms, change in disease status, quality of life (QOL), medication use, and treatment-related morbidity. A prospective cohort study and case series have shown clinically significant pain relief (defined as a decrease of 2 units from baseline on the Brief Pain Inventory scale) or reduction in opioid use following treatment of painful osteolytic metastases. A multicenter, prospective study reported significant reductions in pain through the 6-month follow-up period, with 59% of patients achieving immediate improvement in pain within 3 days of RFA. The population is comprised of patients with few or no treatment options, for whom short-term pain relief is an appropriate clinical outcome. The evidence is sufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have painful osteoid osteomas who receive RFA, the evidence includes numerous observational studies and systematic reviews of these studies. Relevant outcomes are symptoms, change in disease status, QOL, medication use, and treatment-related morbidity. In a systematic review of thermal ablation techniques, clinical success (pain-free) was achieved in 94% to 98% of patients. Most patients (89% to 96%) remained pain-free when assessed during longer-term follow-up. Another systematic review reported similar success rates noting an average 8.3% failure rate among patients receiving computed tomography (CT) -guided RFA. Although no randomized trials of RFA for osteoid osteomas have been performed, the uncontrolled studies have demonstrated RFA can provide adequate symptom relief with minimal complications, for a population for whom short-term symptom relief and avoidance of invasive procedures are appropriate clinical outcomes. The evidence is sufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have localized renal cell carcinoma (RCC) that is no more than 4 cm in size who receive RFA, the evidence includes a randomized controlled trial (RCT), numerous observational studies,

and systematic reviews of these studies. Relevant outcomes are overall survival (OS), change in disease status, QOL, and treatment-related morbidity. A recent meta-analysis that included only an RCT and cohort studies found that RFA was as effective as nephrectomy for small renal tumors, with a reduction in complications. Another recent meta-analysis found that partial nephrectomy (PN) was superior to ablative techniques (the study included RFA but also cryoablation and microwave ablation) in overall mortality and local recurrence but not in cancer-specific mortality. It also found fewer complications and improved renal function with ablation. A meta-analysis from 2022 found that PN was superior to ablation (RFA, cryoablation, and microwave ablation) in local recurrence. Overall complications, decline in renal function, and cancer-specific mortality rates did not differ between ablation and PN. Although inconsistent, the evidence does suggest that, for small renal tumors, RFA may result in a similar rate of disease progression with a lower complication rate than nephrectomy. However, comparative trials are needed to determine with greater certainty the effects of these treatments in the same patient population. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have inoperable primary pulmonary tumors or nonpulmonary tumors metastatic to the lung who receive RFA, the evidence includes prospective observational studies and systematic reviews of these studies. Relevant outcomes are OS, change in disease status, QOL, and treatment-related morbidity. A multicenter study found that for tumors less than 3.5 cm in size, RFA can lead to a complete response in as many as 88% of patients for at least 1 year. Two-year survival rates have been reported to range from 41% to 75% in case series, with 5-year survival rates of 20% to 27%. In general, the evidence suggests that RFA results in adequate survival and tumor control in patients who are not surgical candidates, with low morbidity rates. The evidence is sufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have breast tumors who receive RFA, the evidence includes observational studies and systematic reviews of these studies. Relevant outcomes are OS, change in disease status, QOL, and treatment-related morbidity. Evidence has reported varied and incomplete ablation rates with concerns about postablation tumor cell viability. Long-term improvements in health outcomes have not been demonstrated. Additionally, available studies do not permit comparisons with conventional breast-conserving procedures. Further prospective studies, with long-term follow-up, should focus on whether RFA of the breast for small tumors can provide local control and survival rates compared with conventional breast-conserving treatment. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have benign thyroid tumors who receive RFA, the evidence includes RCTs, prospective studies, case series, and systematic reviews of these studies. Relevant outcomes are symptoms, change in disease status, QOL, medication use, and treatment-related morbidity. Systematic reviews have demonstrated that RFA results in a significant reduction in thyroid nodule size, with a 2020 review showing that these changes remain durable through at least 36 months. Complication rates are generally low, but include voice changes. The data are limited by significant heterogeneity in meta-analyses, a lack of generalizability to populations outside Republic of Korea and Italy, and a lack of comparators more relevant to practice in the United States. Further studies comparing RFA to percutaneous ethanol injection (PEI) or surgery would be more informative in determining the potential utility of RFA in patients with symptomatic or large benign thyroid tumors as these are the recommended treatment options per the American Thyroid Association. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

For individuals who have miscellaneous tumors (eg, head and neck, thyroid cancer, pancreas) who receive RFA, the evidence includes a few case series, prospective observational studies, and retrospective comparative studies. Relevant outcomes are OS, change in disease status, QOL, and treatment-related morbidity. There is a limited evidence base for these tumor types. Reporting on outcomes or comparisons with other treatments is limited. These studies do not permit conclusions on the health benefits of RFA. The evidence is insufficient to determine that the technology results in an improvement in the net health outcome.

Policy History

Date	Action
11/2023	Annual policy review. Description, summary, and references updated. Policy
	statements unchanged.
11/2022	Annual policy review. Description, summary, and references updated. Minor
	editorial refinements to policy statements; intent unchanged.
11/2020	Annual policy review. Description, summary, and references updated. Policy
	statements unchanged.
10/2019	Annual policy review. Description, summary, and references updated. Policy
	statements unchanged.
10/2018	Annual policy review. Description, summary, and references updated. Policy
	statements unchanged.
1/2018	Clarified coding information.
10/2017	Annual policy review. New references added.
10/2016	Annual policy review. New references added.
1/2016	Clarified coding information.
11/2015	Annual policy review. New references added.
12/2014	Annual policy review. New references added.
5/2014	Updated Coding section with ICD10 procedure and diagnosis codes.
	Effective 10/2015.
1/2014	Annual policy review. New references added.
6/2013	Annual policy review.
	New investigational indications described. Effective 6/1/2013.
11/2011-4/2012	Medical policy ICD 10 remediation: Formatting, editing and coding updates.
	No changes to policy statements.
10/2011	Reviewed - Medical Policy Group - Gastroenterology, Nutrition and Organ
	Transplantation.
	No changes to policy statements.
7/2011	Reviewed - Medical Policy Group - Hematology and Oncology.
	No changes to policy statements.
11/2010	Reviewed - Medical Policy Group - Gastroenterology, Nutrition and Organ
	Transplantation.
	No changes to policy statements.
9/2010	Reviewed - Medical Policy Group - Hematology and Oncology.
0/0040	No changes to policy statements.
9/2010	New policy effective 9/2010 describing ongoing covered and non-covered indications.
11/2009	National policy reviewed 11/2009.
	Revisions to coverage statement made. Effective 11/2009.

Information Pertaining to All Blue Cross Blue Shield Medical Policies

Click on any of the following terms to access the relevant information:

Medical Policy Terms of Use

Managed Care Guidelines

Indemnity/PPO Guidelines

Clinical Exception Process

Medical Technology Assessment Guidelines

References

- 1. Jatoi I, Sung H, Jemal A. The Emergence of the Racial Disparity in U.S. Breast-Cancer Mortality. N Engl J Med. Jun 23 2022; 386(25): 2349-2352. PMID 35713541
- 2. Yedjou CG, Sims JN, Miele L, et al. Health and Racial Disparity in Breast Cancer. Adv Exp Med Biol. 2019; 1152: 31-49. PMID 31456178

- 3. National Cancer Institute. SEER Cancer Stat Facts: Kidney and Renal Pelvis Cancer. 2023. https://seer.cancer.gov/statfacts/html/kidrp.html. Accessed August 4, 2023.
- Howard JM, Nandy K, Woldu SL, et al. Demographic Factors Associated With Non-Guideline-Based Treatment of Kidney Cancer in the United States. JAMA Netw Open. Jun 01 2021; 4(6): e2112813. PMID 34106265
- 5. Levy J, Hopkins T, Morris J, et al. Radiofrequency Ablation for the Palliative Treatment of Bone Metastases: Outcomes from the Multicenter OsteoCool Tumor Ablation Post-Market Study (OPuS One Study) in 100 Patients. J Vasc Interv Radiol. Nov 2020; 31(11): 1745-1752. PMID 33129427
- Goetz MP, Callstrom MR, Charboneau JW, et al. Percutaneous image-guided radiofrequency ablation of painful metastases involving bone: a multicenter study. J Clin Oncol. Jan 15 2004; 22(2): 300-6. PMID 14722039
- 7. Grönemeyer DH, Schirp S, Gevargez A. Image-guided radiofrequency ablation of spinal tumors: preliminary experience with an expandable array electrode. Cancer J. 2002; 8(1): 33-9. PMID 11898806
- Kojima H, Tanigawa N, Kariya S, et al. Clinical assessment of percutaneous radiofrequency ablation for painful metastatic bone tumors. Cardiovasc Intervent Radiol. 2006; 29(6): 1022-6. PMID 16988875
- 9. Tordjman M, Perronne L, Madelin G, et al. CT-guided radiofrequency ablation for osteoid osteomas: a systematic review. Eur Radiol. Nov 2020; 30(11): 5952-5963. PMID 32518986
- Lanza E, Thouvenin Y, Viala P, et al. Osteoid osteoma treated by percutaneous thermal ablation: when do we fail? A systematic review and guidelines for future reporting. Cardiovasc Intervent Radiol. Dec 2014; 37(6): 1530-9. PMID 24337349
- 11. Albisinni U, Facchini G, Spinnato P, et al. Spinal osteoid osteoma: efficacy and safety of radiofrequency ablation. Skeletal Radiol. Aug 2017; 46(8): 1087-1094. PMID 28497160
- 12. Lassalle L, Campagna R, Corcos G, et al. Therapeutic outcome of CT-guided radiofrequency ablation in patients with osteoid osteoma. Skeletal Radiol. Jul 2017; 46(7): 949-956. PMID 28429047
- 13. Rimondi E, Mavrogenis AF, Rossi G, et al. Radiofrequency ablation for non-spinal osteoid osteomas in 557 patients. Eur Radiol. Jan 2012; 22(1): 181-8. PMID 21842430
- 14. Sahin C, Oc Y, Ediz N, et al. The safety and the efficacy of computed tomography guided percutaneous radiofrequency ablation of osteoid osteoma. Acta Orthop Traumatol Turc. Sep 2019; 53(5): 360-365. PMID 31371131
- Knudsen M, Riishede A, Lücke A, et al. Computed tomography-guided radiofrequency ablation is a safe and effective treatment of osteoid osteoma located outside the spine. Dan Med J. May 2015; 62(5). PMID 26050823
- 16. Rosenthal DI, Hornicek FJ, Torriani M, et al. Osteoid osteoma: percutaneous treatment with radiofrequency energy. Radiology. Oct 2003; 229(1): 171-5. PMID 12944597
- 17. Yanagisawa T, Mori K, Kawada T, et al. Differential efficacy of ablation therapy versus partial nephrectomy between clinical T1a and T1b renal tumors: A systematic review and meta-analysis. Urol Oncol. Jul 2022; 40(7): 315-330. PMID 35562311
- 18. Uhlig J, Strauss A, Rücker G, et al. Partial nephrectomy versus ablative techniques for small renal masses: a systematic review and network meta-analysis. Eur Radiol. Mar 2019; 29(3): 1293-1307. PMID 30255245
- 19. Katsanos K, Mailli L, Krokidis M, et al. Systematic review and meta-analysis of thermal ablation versus surgical nephrectomy for small renal tumours. Cardiovasc Intervent Radiol. Apr 2014; 37(2): 427-37. PMID 24482030
- El Dib R, Touma NJ, Kapoor A. Cryoablation vs radiofrequency ablation for the treatment of renal cell carcinoma: a meta-analysis of case series studies. BJU Int. Aug 2012; 110(4): 510-6. PMID 22304329
- 21. Liu SY, Chu CM, Kong AP, et al. Radiofrequency ablation compared with laparoscopic adrenalectomy for aldosterone-producing adenoma. Br J Surg. Oct 2016; 103(11): 1476-86. PMID 27511444
- Marshall HR, Shakeri S, Hosseiny M, et al. Long-Term Survival after Percutaneous Radiofrequency Ablation of Pathologically Proven Renal Cell Carcinoma in 100 Patients. J Vasc Interv Radiol. Jan 2020; 31(1): 15-24. PMID 31767409
- 23. Andrews JR, Atwell T, Schmit G, et al. Oncologic Outcomes Following Partial Nephrectomy and Percutaneous Ablation for cT1 Renal Masses. Eur Urol. Aug 2019; 76(2): 244-251. PMID 31060824

- 24. Park BK, Gong IH, Kang MY, et al. RFA versus robotic partial nephrectomy for T1a renal cell carcinoma: a propensity score-matched comparison of mid-term outcome. Eur Radiol. Jul 2018; 28(7): 2979-2985. PMID 29426988
- 25. Dai Y, Covarrubias D, Uppot R, et al. Image-Guided Percutaneous Radiofrequency Ablation of Central Renal Cell Carcinoma: Assessment of Clinical Efficacy and Safety in 31 Tumors. J Vasc Interv Radiol. Dec 2017; 28(12): 1643-1650. PMID 28673657
- 26. Dvorak P, Hoffmann P, Brodak M, et al. Percutaneous radiofrequency and microwave ablation in the treatment of renal tumors 10 years of experience. Wideochir Inne Tech Maloinwazyjne. Dec 2017; 12(4): 394-402. PMID 29362655
- 27. Pantelidou M, Challacombe B, McGrath A, et al. Percutaneous Radiofrequency Ablation Versus Robotic-Assisted Partial Nephrectomy for the Treatment of Small Renal Cell Carcinoma. Cardiovasc Intervent Radiol. Nov 2016; 39(11): 1595-1603. PMID 27435582
- 28. Iannuccilli JD, Dupuy DE, Beland MD, et al. Effectiveness and safety of computed tomography-guided radiofrequency ablation of renal cancer: a 14-year single institution experience in 203 patients. Eur Radiol. Jun 2016; 26(6): 1656-64. PMID 26373755
- 29. Schlijper RC, Grutters JP, Houben R, et al. What to choose as radical local treatment for lung metastases from colo-rectal cancer: surgery or radiofrequency ablation?. Cancer Treat Rev. Feb 2014; 40(1): 60-7. PMID 23768754
- 30. Ratko TA, Vats V, Brock J, et al. Local Nonsurgical Therapies for Stage I and Symptomatic Obstructive Non- Small-Cell Lung Cancer (Comparative Effectiveness Review No. 112). Rockville, MD: Agency for Healthcare Research and Quality; 2013.
- 31. Bilal H, Mahmood S, Rajashanker B, et al. Is radiofrequency ablation more effective than stereotactic ablative radiotherapy in patients with early stage medically inoperable non-small cell lung cancer?. Interact Cardiovasc Thorac Surg. Aug 2012; 15(2): 258-65. PMID 22581864
- 32. Chan VO, McDermott S, Malone DE, et al. Percutaneous radiofrequency ablation of lung tumors: evaluation of the literature using evidence-based techniques. J Thorac Imaging. Feb 2011; 26(1): 18-26. PMID 20829720
- 33. Huang L, Han Y, Zhao J, et al. Is radiofrequency thermal ablation a safe and effective procedure in the treatment of pulmonary malignancies?. Eur J Cardiothorac Surg. Mar 2011; 39(3): 348-51. PMID 20663679
- 34. Zemlyak A, Moore WH, Bilfinger TV. Comparison of survival after sublobar resections and ablative therapies for stage I non-small cell lung cancer. J Am Coll Surg. Jul 2010; 211(1): 68-72. PMID 20610251
- 35. Lencioni R, Crocetti L, Cioni R, et al. Response to radiofrequency ablation of pulmonary tumours: a prospective, intention-to-treat, multicentre clinical trial (the RAPTURE study). Lancet Oncol. Jul 2008; 9(7): 621-8. PMID 18565793
- 36. Zhu JC, Yan TD, Glenn D, et al. Radiofrequency ablation of lung tumors: feasibility and safety. Ann Thorac Surg. Apr 2009; 87(4): 1023-8. PMID 19324122
- 37. Pennathur A, Abbas G, Gooding WE, et al. Image-guided radiofrequency ablation of lung neoplasm in 100 consecutive patients by a thoracic surgical service. Ann Thorac Surg. Nov 2009; 88(5): 1601-6; discussion 1607-8. PMID 19853119
- 38. Xia LY, Hu QL, Xu WY. Efficacy and Safety of Radiofrequency Ablation for Breast Cancer Smaller Than 2 cm: A Systematic Review and Meta-Analysis. Front Oncol. 2021; 11: 651646. PMID 34012918
- 39. Peek MCL, Ahmed M, Napoli A, et al. Minimally invasive ablative techniques in the treatment of breast cancer: a systematic review and meta-analysis. Int J Hyperthermia. Mar 2017; 33(2): 191-202. PMID 27575566
- 40. Zhao Z, Wu F. Minimally-invasive thermal ablation of early-stage breast cancer: a systemic review. Eur J Surg Oncol. Dec 2010; 36(12): 1149-55. PMID 20889281
- 41. Soukup B, Bismohun S, Reefy S, et al. The evolving role of radiofrequency ablation therapy of breast lesions. Anticancer Res. Sep 2010; 30(9): 3693-7. PMID 20944155
- 42. Ito T, Oura S, Nagamine S, et al. Radiofrequency Ablation of Breast Cancer: A Retrospective Study. Clin Breast Cancer. Aug 2018; 18(4): e495-e500. PMID 29079443
- 43. Li P, Xiao-Yin T, Cui D, et al. Evaluation of the safety and efficacy of percutaneous radiofrequency ablation for treating multiple breast fibroadenoma. J Cancer Res Ther. Dec 2016; 12(Supplement): C138-C142. PMID 28230006

- 44. Wilson M, Korourian S, Boneti C, et al. Long-term results of excision followed by radiofrequency ablation as the sole means of local therapy for breast cancer. Ann Surg Oncol. Oct 2012; 19(10): 3192-8. PMID 22911363
- 45. Kinoshita T, Iwamoto E, Tsuda H, et al. Radiofrequency ablation as local therapy for early breast carcinomas. Breast Cancer. Jan 2011; 18(1): 10-7. PMID 20072824
- 46. Imoto S, Wada N, Sakemura N, et al. Feasibility study on radiofrequency ablation followed by partial mastectomy for stage I breast cancer patients. Breast. Apr 2009; 18(2): 130-4. PMID 19324550
- 47. Garbay JR, Mathieu MC, Lamuraglia M, et al. Radiofrequency thermal ablation of breast cancer local recurrence: a phase II clinical trial. Ann Surg Oncol. Nov 2008; 15(11): 3222-6. PMID 18709415
- 48. Haugen BR, Alexander EK, Bible KC, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. Jan 2016: 26(1): 1-133. PMID 26462967
- Cho SJ, Baek JH, Chung SR, et al. Long-Term Results of Thermal Ablation of Benign Thyroid Nodules: A Systematic Review and Meta-Analysis. Endocrinol Metab (Seoul). Jun 2020; 35(2): 339-350. PMID 32615718
- 50. Chen F, Tian G, Kong D, et al. Radiofrequency ablation for treatment of benign thyroid nodules: A PRISMA-compliant systematic review and meta-analysis of outcomes. Medicine (Baltimore). Aug 2016; 95(34): e4659. PMID 27559968
- 51. Fuller CW, Nguyen SA, Lohia S, et al. Radiofrequency ablation for treatment of benign thyroid nodules: systematic review. Laryngoscope. Jan 2014; 124(1): 346-53. PMID 24122763
- 52. Kim JH, Yoo WS, Park YJ, et al. Efficacy and Safety of Radiofrequency Ablation for Treatment of Locally Recurrent Thyroid Cancers Smaller than 2 cm. Radiology. Sep 2015; 276(3): 909-18. PMID 25848897
- 53. Owen RP, Khan SA, Negassa A, et al. Radiofrequency ablation of advanced head and neck cancer. Arch Otolaryngol Head Neck Surg. May 2011; 137(5): 493-8. PMID 21576561
- 54. Brook AL, Gold MM, Miller TS, et al. CT-guided radiofrequency ablation in the palliative treatment of recurrent advanced head and neck malignancies. J Vasc Interv Radiol. May 2008; 19(5): 725-35. PMID 18440462
- 55. Owen RP, Silver CE, Ravikumar TS, et al. Techniques for radiofrequency ablation of head and neck tumors. Arch Otolaryngol Head Neck Surg. Jan 2004; 130(1): 52-6. PMID 14732768
- 56. Rey VE, Labrador R, Falcon M, et al. Transvaginal Radiofrequency Ablation of Myomas: Technique, Outcomes, and Complications. J Laparoendosc Adv Surg Tech A. Jan 2019; 29(1): 24-28. PMID 30198831
- 57. Yin G, Chen M, Yang S, et al. Treatment of uterine myomas by radiofrequency thermal ablation: a 10-year retrospective cohort study. Reprod Sci. May 2015; 22(5): 609-14. PMID 25355802
- 58. Liu B, Mo C, Wang W, et al. Treatment outcomes of percutaneous radiofrequency ablation versus adrenalectomy for adrenal metastases: a retrospective comparative study. J Endocrinol Invest. Sep 2020; 43(9): 1249-1257. PMID 32166699
- 59. Yang MH, Tyan YS, Huang YH, et al. Comparison of radiofrequency ablation versus laparoscopic adrenalectomy for benign aldosterone-producing adenoma. Radiol Med. Oct 2016; 121(10): 811-9. PMID 27300650
- Hasegawa T, Takaki H, Kodama H, et al. Three-year Survival Rate after Radiofrequency Ablation for Surgically Resectable Colorectal Lung Metastases: A Prospective Multicenter Study. Radiology. Mar 2020; 294(3): 686-695. PMID 31934829
- 61. Locklin JK, Mannes A, Berger A, et al. Palliation of soft tissue cancer pain with radiofrequency ablation. J Support Oncol. 2004; 2(5): 439-45. PMID 15524075
- 62. Rosenthal DI. Radiofrequency treatment. Orthop Clin North Am. Jul 2006; 37(3): 475-84, viii. PMID 16846772
- 63. Liapi E, Geschwind JF. Transcatheter and ablative therapeutic approaches for solid malignancies. J Clin Oncol. Mar 10 2007; 25(8): 978-86. PMID 17350947
- 64. Spiliotis JD, Datsis AC, Michalopoulos NV, et al. Radiofrequency ablation combined with palliative surgery may prolong survival of patients with advanced cancer of the pancreas. Langenbecks Arch Surg. Jan 2007; 392(1): 55-60. PMID 17089173

- 65. Zou YP, Li WM, Zheng F, et al. Intraoperative radiofrequency ablation combined with 125 iodine seed implantation for unresectable pancreatic cancer. World J Gastroenterol. Oct 28 2010; 16(40): 5104-10. PMID 20976848
- 66. Cantore M, Girelli R, Mambrini A, et al. Combined modality treatment for patients with locally advanced pancreatic adenocarcinoma. Br J Surg. Aug 2012; 99(8): 1083-8. PMID 22648697
- 67. Rombouts SJ, Vogel JA, van Santvoort HC, et al. Systematic review of innovative ablative therapies for the treatment of locally advanced pancreatic cancer. Br J Surg. Feb 2015; 102(3): 182-93. PMID 25524417
- 68. Kameyama S, Murakami H, Masuda H, et al. Minimally invasive magnetic resonance imaging-guided stereotactic radiofrequency thermocoagulation for epileptogenic hypothalamic hamartomas. Neurosurgery. Sep 2009; 65(3): 438-49; discussion 449. PMID 19687687
- 69. Vavra P, Dostalik J, Zacharoulis D, et al. Endoscopic radiofrequency ablation in colorectal cancer: initial clinical results of a new bipolar radiofrequency ablation device. Dis Colon Rectum. Feb 2009; 52(2): 355-8. PMID 19279436
- 70. Mylona S, Karagiannis G, Patsoura S, et al. Palliative treatment of rectal carcinoma recurrence using radiofrequency ablation. Cardiovasc Intervent Radiol. Aug 2012; 35(4): 875-82. PMID 22167304
- 71. Ripley RT, Gajdos C, Reppert AE, et al. Sequential radiofrequency ablation and surgical debulking for unresectable colorectal carcinoma: thermo-surgical ablation. J Surg Oncol. Feb 2013; 107(2): 144-7. PMID 22927225
- 72. Howington JA, Blum MG, Chang AC, et al. Treatment of stage I and II non-small cell lung cancer: Diagnosis and management of lung cancer, 3rd ed: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. May 2013; 143(5 Suppl): e278S-e313S. PMID 23649443
- 73. Donington J, Ferguson M, Mazzone P, et al. American College of Chest Physicians and Society of Thoracic Surgeons consensus statement for evaluation and management for high-risk patients with stage I non-small cell lung cancer. Chest. Dec 2012; 142(6): 1620-1635. PMID 23208335
- 74. Orloff LA, Noel JE, Stack BC, et al. Radiofrequency ablation and related ultrasound-guided ablation technologies for treatment of benign and malignant thyroid disease: An international multidisciplinary consensus statement of the American Head and Neck Society Endocrine Surgery Section with the Asia Pacific Society of Thyroid Surgery, Associazione Medici Endocrinologi, British Association of Endocrine and Thyroid Surgeons, European Thyroid Association, Italian Society of Endocrine Surgery Units, Korean Society of Thyroid Radiology, Latin American Thyroid Society, and Thyroid Nodules Therapies Association. Head Neck. Mar 2022; 44(3): 633-660. PMID 34939714
- 75. Campbell S, Uzzo RG, Allaf ME, et al. Renal Mass and Localized Renal Cancer: AUA Guideline. J Urol. Sep 2017; 198(3): 520-529. PMID 28479239
- 76. Campbell SC, Clark PE, Chang SS, et al. Renal Mass and Localized Renal Cancer: Evaluation, Management, and Follow-Up: AUA Guideline: Part I. J Urol. Aug 2021; 206(2): 199-208. PMID 34115547
- 77. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Non-small cell lung cancer. Version 3.2023. Updated April 13, 2023. https://www.nccn.org/professionals/physician_gls/pdf/nscl.pdf. Accessed August 5, 2023.
- 78. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Thyroid Carcinoma. Version 3.2023. Updated July 27, 2023. https://www.nccn.org/professionals/physician_gls/pdf/thyroid.pdf. Accessed August 6, 2023.
- 79. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Kidney Cancer. Version 1.2024. Updated June 21, 2023. https://www.nccn.org/professionals/physician_gls/pdf/kidney.pdf. Accessed August 1, 2023.
- 80. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Colon Cancer. Version 2.2023. Updated April 25, 2023. https://www.nccn.org/professionals/physician_gls/pdf/colon.pdf. Accessed August 2, 2023.
- 81. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines): Head and Neck Cancers. Version 2.2023. Updated May 15, 2023. https://www.nccn.org/professionals/physician_gls/pdf/head-and-neck.pdf. Accessed August 7, 2023.
- 82. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Breast Cancer. Version 4.2023. Updated March 23, 2023. https://www.nccn.org/professionals/physician_gls/pdf/breast.pdf. Accessed August 3, 2023.

- 83. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Bone Cancer. Version 3.2023. Updated April 4, 2023. https://www.nccn.org/professionals/physician_gls/pdf/bone.pdf. Accessed August 4, 2023.
- 84. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines): Pancreatic Adenocarcinoma. Version 2.2023. Updated June 19, 2023. https://www.nccn.org/professionals/physician_gls/pdf/pancreatic.pdf. Accessed August 8, 2023.
- 85. National Institute for Health and Care Excellence (NICE). Computed tomography-guided thermocoagulation of osteoid osteoma [IPG53]. 2004; https://www.nice.org.uk/guidance/ipg53. Accessed August 4, 2023.
- 86. National Institute for Health and Care Excellence (NICE). Percutaneous radiofrequency ablation of renal cancer [IPG353]. 2010; https://www.nice.org.uk/guidance/ipg353. Accessed August 2, 2023.
- 87. National Institute for Health and Care Excellence (NICE). Percutaneous radiofrequency ablation for primary and secondary lung cancers [IPG372]. 2010; https://www.nice.org.uk/guidance/ipg372. Accessed August 3, 2023.
- 88. National Institute for Health and Care Excellence (NICE). Ultrasound-guided percutaneous radiofrequency ablation for benign thyroid nodules [IPG562). 2016; https://www.nice.org.uk/guidance/IPG562. Accessed August 1, 2023.
- 89. Morris CS, Baerlocher MO, Dariushnia SR, et al. Society of Interventional Radiology Position Statement on the Role of Percutaneous Ablation in Renal Cell Carcinoma: Endorsed by the Canadian Association for Interventional Radiology and the Society of Interventional Oncology. J Vasc Interv Radiol. Feb 2020; 31(2): 189-194.e3. PMID 31917025